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ABSTRACT

Large language models (LLMs) have shown remarkable capabilities across var-
ious tasks, that are learned from massive amounts of text-based data. Although
LLMs can control output sequence length, particularly through instruction-based
settings, the internal mechanisms behind this control has been unexplored. In this
study, we provide empirical evidence on how output sequence length information
is encoded within the internal representations of LLMs. In particular, our find-
ings show that multi-head attention mechanisms are critical in determining output
sequence length, which can be adjusted in a disentangling manner. By scaling
specific hidden units within the model, we can control the output sequence length
without losing the informativeness of the generated text, thereby indicating that
length information is partially disentangled from semantic information. Moreover,
some hidden units become increasingly active as prompts become more length-
specific, thus reflecting the model’s internal awareness of this attribute. Our find-
ings suggest that LLMs have learned robust and adaptable internal mechanisms
for controlling output length without external controls

1 INTRODUCTION

Large language models (LLMs) have gained considerable attention in recent years for their remark-
able task-solving capabilities (Ouyang et al., 2022} [Wei et al.| 2022} Bubeck et al.l 2023). LLMs
are trained to predict the next word in a sequence. They can produce coherent and informative
text, which demonstrates their implicit understanding of diverse linguistic structures (Tenney et al.,
2019; Niu et al., 2022 Begus et al.l [2023). Furthermore, they also learn when to stop generating
text to ensure that the output adheres to appropriate length constraints (Juseon-Do et al., 2024). In
LLMs, controlling output sequence length is crucial for real-world applications, such as summariza-
tion, where fitting content within specified length limits without losing informativeness is crucial.
Therefore, the number of studies attempting to improve length controllability has increased drasti-
cally (Shen et al.; 2023; Jie et al., 2024} |Yuan et al.| 2024).

Based on advancements in instruction-based LLMs, it is observed that injecting constraints into
prompts can further effectively control output length without requiring model modifications (Juseon-
Do et al.}[2024). However, these prompt engineering methods mainly focus on external controls, and
it has not been explored how LLMs internally encode and constrain output sequence length. Users
of LLMs usually have a desired length for generated texts in applications, such as text summariza-
tion (Liu et al.l 2018; Makino et al., |2019; [Liu et al., [2022; Kwon et al.l [2023), machine transla-
tion (Wu et al., [2016; Murray & Chiang, [2018}; Zhuocheng et al., 2023), knowledge QA, or dialogue
generation (Liu et al.|[2020; |Gupta et al.,|2021). Understanding these internal mechanisms is critical
for achieving precise length control, while enhancing the interpretability and robustness of LLMs in
generation-based systems. Herein, we aim to investigate how output sequence length information
is encoded within the internal representations of general transformer architectures. Specifically, we
first investigate which components within LLM transformer layers contribute to length control. Our
findings reveal that the outputs from multi-head attention mechanisms in the lower layers play a key
role in determining and controlling output sequence length in a tunable and disentangled manner.

We empirically demonstrate, based on human evaluations, that we can adjust output length during
generation without losing the coherence and informativeness of texts by scaling specific hidden
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units within the outputs from the lower layers of multi-head attention mechanisms. For instance,
multiplying certain hidden units with negative numbers results in longer text, while multiplying them
by positive numbers generates more concise texts without losing informativeness. Furthermore,
certain hidden units related to length information show increased activity as prompts become more
specific regarding length constraints. These units appear to be directly involved in controlling output
length, indicating that LL.Ms have learned to process length-related information as a distinct feature,
partially disentangled from other semantic information. Moreover, we find that the same highly
activated hidden units are consistently involved in length control even after fine-tuning, regardless
of length constraints in prompts (Dai et al., 2023).

For this, we utilize a sentence summarization task, which often requires adherence to desired sum-
mary lengths. In this study, we employ models from the Llama-2 family, including Llama-3-8B,and
the Phi-3 family.

2 RELATED WORK

Large Language Models. In recent years, LLMs have achieved considerable success due to their
remarkable task-solving abilities, specifically in zero-shot settings (Radford et al., 2019} |Brown
et al.| 2020). LLMs have been broadly categorized into open and closed models. The open models,
such as the Llama or Phi family, offer flexible access to modify their architectures, while the closed
models, such as ChatGPTE] have demonstrated remarkable reasoning abilities in various natural
language processing tasks (Jiao et al.L[2023; |Peng et al.,[2023; [Laskar et al.| 2023} |Ye et al.| 2023} Xie
et al., 2023; [2024} Juseon-Do et al.| [2024)). Recent studies have focused on finding better methods
to prompt LLMs (Zhou et al.| 2022; [ Kojima et al., [2023} [Zhou et al., [2023)).

Interpretability. Due to increasing interest in investigating the internal mechanisms of deep neural
networks (Riuker et al., [2023)), significant attempts have been made to understand LLMs with a
focus on models like BERT (Tenney et al.,2019; Rogers et al., 2020; Niu et al.,2022), GPT (Hanna
et al.l 2023), and even multimodal models (Goh et al., [2021). For instance, |Gurnee & Tegmark
(2024) showed that, when handling various prompts, LLMs learn linear representations of space
and time across multiple scales that show robustness. They also showed that next token prediction
can be changed simply by disentangling hidden units related to time. |Heinzerling & Inui (2024)
introduced directions that encode numeric properties in an interpretable manner; hence, by disen-
tangling these representations, LLM prediction can change accordingly. Moreover, there have been
attempts to investigate how in-context learning with LLMs behaves similar to explicit fine-tuning
for better understanding them (Dai et al., |2023). Early efforts to investigate how neural networks
treat length information have focused on memory cell networks in LSTMs, as they recursively en-
code and decode sequences, though they failed to find single units related to length information (Shi
et al.,[2016).

Length Controllable Summarization. Text summarization aims to produce a concise summary
from an original text by retaining informative contents (Liu et al., [2018; Takase & Okazaki, 2019
Li et al., 2020; |He et al, 2022). As the summarization often requires additional constraints such
as a desired summary length, previous studies have focused on learning length-specific parame-
ters (Kikuchi et al) [2016; [Schumann et al., 2020} (Ghalandari et al., [2022), injecting direct con-
straints (Takase & Okazaki, [2019; Makino et al.| [2019), or splitting the training dataset into specific
length ranges (He et al.,[2022)). Recently, Juseon-Do et al.|(2024) considered in-context learning and
demonstrated that LLMs can control output sequence length through “length priming”. This method
involves injecting more length-specific information into prompts, thereby allowing the model to ad-
just output sequence length without modifying model architectures or learning parameters. Jie et al.
(2024) considered length control types such as greater/smaller than a value with exhaustive model
modifications with reinforcement learning.

To the best of our knowledge, this study is the first attempt to interpret how length information is
encoded in LLMs and demonstrate how length-specific information is partially disentangled from
semantic information. Furthermore, by comparing various length-specific prompts, we investigate
how in-context learning and fine-tuning can influence the internal representations of LLMs with
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different prompts. Finally, we demonstrate how disentangling length-specific hidden units can adjust
output sequence length without losing informativeness.

3 FINDING LENGTH REPRESENTATIONS

Our goal is to understand whether and how length representations are encoded in LLMs when using
various length-constraint prompts. For this, we extracted outputs from different components and
layers of transformer architectures during text generation. We then applied linear regression to
predict the generation time steps from these hidden states. We used the coefficient of determination,
R2, to evaluate the extent to which internal states of transformer capture length representations.

3.1 SUMMARIZATION DATASET

For our investigation, we used the Google sentence summarization datasetE] given that summariza-
tion often requires additional constraints, such as a desired summary length (Takase & Okazaki,
2019; Schumann et al., 2020; |Ghalandari et al.l [2022). This dataset was automatically created by
considering the syntactic dependency tree structure from news headlines (Filippova & Altunl [2013).
The training, validation, and test datasets consist of 200,000, 1,000, and 1,000 pairs, respectively.
The average gold compression ratio is 0.45 for the test dataset used in the evaluation.

We used the dataset in an instruction-based format following previous work (Juseon-Do et al.|
2024)E] Table |1| presents the instruction templates. As can be seen, in the No-constraint setting,
the model summarizes a given sentence without considering a desired length, while in the Length
setting, it summarizes the sentence with a specific desired length. The Priming setting further con-
siders more specific length information, such as the length of a given sentence and the number of
words to keep. We inject the length of ground-truth summaries for the length constraint instructions.

Table 1: Instruction formats for length constraints. “src” indicates the placeholder for a source
sentence, “del” denotes the placeholder for the number of deleted words, and “keep” and “src len”
denote additional length information.

Constraint Instruction

No-constraint ~ Sentence:\n{src}\nThe sentence without the less important words would be:\n

Length Sentence:\n{src}\nThe sentence without the less important {del} words would be:\n

Sentence that consists of {src len} words:\n{src}\nThe sentence that consists of {keep} words

Primin,
tming without the less important {del} words would be:\n

3.2 MODELS AND METHODS

Models. We performed our experiments using the Llama-2 family of pre-trained LLMs, which range
from 7B to 70B parameters (Touvron et al.||2023)). These include the Llama-3-8B (AI@Meta, [2024)
and the Phi-3 family of Phi-3-mini-4k-instruct, as well as the Phi-3-small-8k-instruct (Abdin et al.,
2024])).Additionally, we considered how 4- and 8-bit quantizations influence length representations
in LLMs.

To investigate how explicit fine-tuning with length constraint prompts affects length-related internal
representations within LLMs, we fine-tune a model on the Google sentence summarization dataset.
Following previous work, which includes length-constraint prompts to enhance model’s ability to
control the output sequence length (Juseon-Do et al., 2024), we utilized QLoRA, a technique that
can maintain the full 16-bit fine-tuning performance (Dettmers et al.,|2023)), for fine-tuning. QLoRA
extends the Low-Rank Adapters (LoRA) method (Hu et al., [2022), which is an advanced form of
parameter-efficient fine-tuning (Mangrulkar et al., 2022)) for LLMs. This approach integrates low-
rank, trainable matrices with the frozen weights of each transformer layer. During training, we used
8-bit quantization for QLoRA, while during inference, we employed 4-bit quantization. We used
greedy decoding across all settings in our experiments to eliminate randomness in the generation
process. Appendix [A] provides further details of hyper-parameters and settings.

*https://github.com/google-research-datasets/sentence-compression.git
*nttps://github.com/JuseonDo/InstructCMP
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Data Preparation. An input sentence S = {sq, S, ..., S, } Was first converted into vector embed-
dings, after which learned positional embeddings were added to form Semp = {s§,55,...,5%}.
These embeddings were then normalized using layer normalization, expressed as Spom =
LayerNorm (Semp ). Then, they were computed through query (Wq), key (Wk), and value (W)
matrices, and were fed into the transformer layers as follows:

MultiHead(Q, K, V') = Concat(head;, head,, . .., head,)Wo (D
Sattn = Semb + MultiHead (Shorm W Q, Snorm WK, Snorm Wv) 2)
Stin = ReLU(LayerNorm( Sy ) W1 + b1)Wa + by 3)
Sout = Saltn + Sffn, (4)

where each head; = softmax (%) V indicates a self-attention operation.

We considered four outputs from the transformer layers, wherein each output represents a distinct
level of encoded information derived from the original input sentence S. We conducted sentence
summarization using prompts in three different settings: No-constraint, Length, and Priming. For
each setting, we investigated these four outputs for each layer. During token generation, we saved
each output with its corresponding numeric time step value, excluding the input token prompts.
For instance, we saved n with its corresponding output when the model generated the n-th token.
Appendix |B|provides further details for predicting time steps from hidden states.

The outputs from the multi-head attention in Equation (1) calculate attention scores between to-
kens, thus enabling the model to capture long-range dependencies. In Equation (2), the multi-head
attention outputs are summed with the original embeddings. The outputs from Equation (3) use a
feed-forward network (FFN) with a ReLU activation function. The final outputs from Equation (4)
integrate the attention and FFN outputs.

Neural Network Regression. To find evidence of length representations in LLMs, we applied a
standard technique to predict a target label associated with labeled input data (Shi et al., |2016),
specifically, X € R™*dmoael ywhere n refers to the number of data, dyoqe iS the dimensionality of a
model’s hidden states, and Y is a target that contains the generation time step as a numeric value
for each corresponding X. We used a two-layer neural network with a hidden layer of 100 neurons
to predict Y = Wy (ReLU(W X + by)) + b,. By investigating how well the model can predict
the generation time step, we can gain insights into how length representations are encoded within
the LLM’s hidden states. To assess how well the time step can be predicted from its corresponding
hidden state in LLMs, we considered the coefficient determination, R2, as a standard regression
metric to evaluate the overall performance.
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Figure 1: R? scores and their standard deviations based on five runs for outputs of four different
types of transformer layers. The scores were averaged. Attention and attention residual refer to
the outputs of Equations (1) and (2), respectively. MLP and MLP residual indicate the outputs of
Equations (3) and (4), respectively.
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Table 2: R? scores and their standard deviations based on five runs for different models with con-
straints. F and S indicate the first and second layers in LLMs, respectively. L indicates the last layer.
Constraint indicates prompt types. The scores were averaged.

Layer type
Model Constraint Attn Out Attn Residual MLP Out MLP Residual
F s L F s L F s L F s L
No-constraint 0.94(0.00) 0.95(0.00) 0.88(0.00) 0.00 (0.00) 0.90(0.00) 0.89 (0.00) 0.84(0.00) 0.70(0.00) 067 (0.01) 0.90(0.00) 0.94(0.00) 0.85(0.00)
Llama-2-7B Length  098(0.00) 0.99(0.00) 093(0.00) 0.11(0.00) 0.94(0.00) 0.93(0.00) 0.89(0.00) 0.77(0.00) 0.70(0.01) 095(0.00) 097 (0.00) 0.89 (0.00)

Priming 0.98 (0.00)  0.99 (0.00) 0.95(0.00) 0.11(0.00) 0.94 (0.00) 0.94(0.00) 0.89(0.00) 0.77 (0.00) 0.78 (0.00) 0.95(0.00) 0.98 (0.00) 0.92 (0.00)

No-constraint  0.95 (0.00) ~ 0.96 (0.00)  0.93(0.00) 0.08 (0.01) 0.93(0.00) 0.92(0.00) 0.90(0.00) 0.83(0.00) 0.74 (0.01) 0.93 (0.00) 0.95(0.00) 0.89 (0.00)
Llama-2-13B Length 0.94 (0.00) 0.94 (0.00) 0.92(0.00) 0.10(0.00) 0.92(0.00) 0.92(0.00) 0.89(0.00) 0.81(0.00) 0.75(0.00) 0.91(0.00) 0.94(0.00) 0.91(0.00)
Priming 0.99 (0.00)  0.99 (0.00) 0.91(0.00) 0.17 (0.00) 0.96 (0.00) 0.92(0.00) 0.92(0.00) 0.81(0.00) 0.72(0.00) 0.97 (0.00) 0.98 (0.00) 0.89 (0.00)

No-constraint  0.99 (0.00)  0.99 (0.00) 0.88 (0.00) 0.17 (0.01) 0.97 (0.00) 0.92(0.00) 0.93(0.00) 0.81(0.00) 0.74 (0.00) 0.98 (0.00) 0.98 (0.00) 0.91 (0.00)
Length 0.99 (0.00)  0.99 (0.00) 0.87(0.00) 0.21(0.01) 0.97 (0.00) 0.93 (0.00) 0.92(0.00) 0.83(0.00) 0.78 (0.01) 0.98(0.00) 0.98(0.00) 0.91 (0.00)
Priming 0.99 (0.00)  0.99(0.00) 0.90(0.01) 0.16 (0.01) 0.96 (0.00) 0.93(0.00) 0.92(0.00) 0.85(0.00) 0.83(0.00) 0.97(0.00) 0.98(0.00) 0.92(0.00)

No-constraint  0.97 (0.00)  0.99 (0.00) 0.95 (0.00) 0.16 (0.00) 0.93(0.00) 0.92(0.00) 0.83(0.01) 0.81(0.01) 0.82(0.00) 0.95(0.00) 0.98(0.00) 0.92 (0.00)
Llama-2-70B Length 0.97(0.00)  0.99(0.00) 0.94(0.00) 0.17(0.00) 0.92(0.00) 0.93(0.00) 0.87 (0.00) 0.84(0.00) 0.80(0.01) 0.95(0.00) 0.98(0.00) 0.92 (0.00)
Priming 098 (0.00) 0.97 (0.00) 0.91(0.00) 0.18(0.00) 0.91(0.00) 0.89(0.00) 0.82(0.00) 0.76(0.01) 0.78 (0.01) 0.94(0.00) 0.95 (0.00) 0.88 (0.00)

No-constraint  0.96 (0.00)  0.98 (0.00) 0.91(0.00) 0.20 (0.00) 0.86(0.00) 0.91(0.00) 0.70(0.00) 0.74 (0.00) 0.78 (0.01) 0.88(0.00) 0.95(0.00) 0.88 (0.00)
Llama-3-8B Length 0.96 (0.00) 0.97 (0.00) 0.93(0.00) 0.16(0.00) 0.88 (0.00) 0.93(0.00) 0.72(0.00) 0.75(0.00) 0.79 (0.01) 0.90 (0.00) 0.96 (0.00) 0.89 (0.00)
Priming 0.97 (0.00)  0.98 (0.00) 0.94(0.00) 0.24(0.00) 0.87 (0.00) 0.94 (0.00) 0.73(0.00) 0.76 (0.00) 0.87 (0.00) 0.89 (0.00) 0.95(0.00) 0.92(0.00)

No-constraint  0.93 (0.00)  0.97 (0.00)  0.91(0.00) 0.07 (0.01) 0.80 (0.01) 0.91(0.00) 0.61(0.01) 0.66 (0.01) 0.55(0.01) 0.84(0.00) 0.95(0.00) 0.86 (0.00)
Phi3-mini-4k Length 0.94(0.00) 0.97 (0.00) 0.92(0.00) 0.04(0.00) 0.80(0.00) 0.92(0.00) 0.65(0.01) 0.67(0.00) 0.56(0.01) 0.82(0.00) 0.94(0.00) 0.86(0.00)
Priming 0.93 (0.00) 0.97 (0.00) 0.89(0.00) 0.07(0.01) 0.77 (0.00) 0.90(0.00) 0.48(0.01) 0.63(0.01) 0.58(0.01) 0.80(0.00) 0.95(0.00) 0.84 (0.00)

No-constraint  0.92 (0.01) 0.95(0.00) 071 (0.01) 0.01(0.01) 0.83(0.00) 0.83(0.00) 0.76 (0.01) 0.72(0.01) 0.48(0.00) 0.87 (0.00) 0.90 (0.00) 0.81 (0.01)

Phi3-small-8k Length 0.94(0.00)  0.97 (0.00) 0.85(0.00) 0.11(0.01) 0.86(0.00) 0.87(0.00) 0.80(0.00) 0.79 (0.01) 0.54(0.01) 0.89(0.00) 0.94(0.00) 0.87 (0.00)
Priming 0.97 (0.00) 0.98 (0.00) 0.81(0.01) 0.27(0.01) 0.92(0.00) 0.87(0.01) 0.86(0.01) 0.83(0.00) 0.58(0.00) 0.93(0.00) 0.97(0.00) 0.86 (0.00)

Llama-2-13B
(fine-tuned)

4 LENGTH REPRESENTATIONS IN LLMS

We first investigated the following empirical questions: Which transformer layer in LLMs contains
length information? Which outputs from a transformer layer in LLMs corresponding to Equations
(1), (2), (3), and (4) contain length information? Do length-specific prompts influence length rep-
resentations in LLMs? Do LLMs retain length representations when 4- and 8-bit quantizations are
applied? How do these compare to full-precision models? Does fine-tuning influence length repre-
sentations in LLMs?

4.1 LAYER-WISE ANALYSIS FOR LENGTH REPRESENTATIONS

Figure 1| shows the variation of R? for outputs from a transformer layer corresponding to Equations
(1), (2), (3), and (4) using Llama-2-7B-Chat. It reveals an interesting pattern in the length represen-
tations within LLMs. In particular, in the second layer, the outputs of Equation (1), which indicates
the attention mechanism, show a stronger correlation with the length representations than the out-
puts from Equations (2), (3), and (4). While the outputs from the other equations also provide strong
correlations, the outputs from Equation (1) have consistently higher R? scores for all prompts. We
also observed a gradual decrease in length representations as inputs are fed into subsequent LLM
layers, and tokens are produced in a step-by-step process. However, in the final layer, the length rep-
resentations begin to increase from the outputs of Equation (1). This result indicates that the LLM
captures length representations in the early stages, similar to how they capture semantic representa-
tions (Niu et al [2022). As such, the increase in length representations in the final layer indicates
that the model may revisit this information to reinforce positional context.

4.2 INFLUENCE OF LENGTH-SPECIFIC PROMPTS

Table 2| shows the results of R? for outputs, which include Llama and Phi LLMs with a 4-bit quan-
tization setting. The results reveal that the attention output consistently has higher R? scores than
the other outputs, particularly in the second layer for the Llama- and Phi-3 families, regardless of
model sizes. However, we observed a notable decrease in performance in the first layer, particularly
in the attention residual. This indicates that the initial input sequence embeddings do not effectively
contain length representations; however, these representations progressively accumulate through the
layers. Although the length-specific prompting method (Priming) can precisely control output se-
quence length (Juseon-Do et al.| 2024), it does not increase the R? when using all hidden units for
prediction. However, when we fine-tuned the models, we found that every model, regardless of the
prompts used, the R? scores were improved.
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Table 3: R? scores with 8-bit and full-precision settings. In each cell, x/y represents the 8-bit quan-
tization and full-precision. The notations are the same as those in Table 2] and standard deviations
are nearly zero.

Layer type
Model Constraint Attn Out Attn Residual MLP Out MLP Residual
F s L F s L F s L F s L
Llamaa  No-constraint 0.99/0.98  0.99/0.99 0.93/0.92 0.110.09 0.950.94 0.940.93 089090 073073 072073 095095 098/098 089/0.89
- Length  098/0.99 0.99/0.99 0.94/0.94 0.11/0.10 094/0.94 0.94/0.93 0.89/0.89 0.750.76 0.72/0.73 0.95/0.95 0.98/0.98 0.90/0.90

Priming 0.98/0.98  0.99/0.99 0.94/0.95 0.14/0.13  0.94/0.94 0.94/0.94 0.90/0.91 0.77/0.77 0.77/0.77 0.95/0.96 0.98/0.98 0.91/0.91

Ll ) No-constraint  0.58/0.55  0.70/0.68  0.76/0.74  0.01/0.04 0.58/0.56 0.73/0.72 0.59/0.58 0.56/0.57 0.61/0.59 0.58/0.55 0.66/0.64 0.70/0.69
?g}g' Length 0.99/0.99  0.99/0.99 0.94/0.94 0.11/0.11  0.96/0.97 0.94/0.94 0.92/0.93 0.83/0.83 0.76/0.76  0.96/0.96 0.98/0.98 0.92/0.92
N Priming 0.99/0.99  0.99/0.99 0.92/0.92 0.19/0.19 0.96/0.96 0.92/0.91 0.92/0.91 0.80/0.81 0.75/0.76 0.96/0.97 0.98/0.98 0.90/0.89

LI 2 No-constraint ~ 0.99/0.99  0.98/0.98  0.87/0.87 0.19/0.22  0.96/0.97 0.92/0.92 0.91/0.92 0.80/0.80 0.75/0.77 0.97/0.97 0.99/0.98  0.90/0.90
(]?Ba-l?ual;ed) Length 0.99/0.99  0.98/0.99 0.87/0.87 0.19/0.20 0.96/0.97 0.92/0.93 0.91/0.91 0.81/0.83 0.78/0.78 0.97/0.97 0.98/0.98 0.91/0.92
N Priming 0.99/0.99  0.99/0.98 0.90/0.90 0.19/0.19 0.95/0.96 0.93/0.93 0.91/0.92 0.86/0.86 0.82/0.82 0.96/0.97 0.98/0.98 0.92/0.92

No-constraint  0.96/0.93  0.97/0.96 0.92/0.92 0.18/0.18 0.86/0.82 0.91/0.91 0.69/0.69 0.76/0.75 0.79/0.80 0.87/0.83  0.95/0.93 0.88/0.88
Length 0.96/0.95  0.98/0.97 0.93/0.93 0.15/0.15 0.87/0.86 0.92/0.93 0.70/0.72 0.78/0.76 0.78/0.79 0.89/0.87 0.96/0.95 0.89/0.89
Priming 0.88/0.86  0.91/0.85 0.90/0.86 0.16/0.14 0.79/0.64 0.84/0.82 0.64/0.53 0.60/0.55 0.59/0.61 0.79/0.70 0.87/0.79 0.75/0.73

Phi3 No-constraint  0.94/0.94  0.97/0.97 0.92/0.92 0.07/0.07 0.80/0.82 0.93/0.93 0.61/0.64 0.66/0.67 0.52/0.53 0.84/0.84 0.95/0.96 0.87/0.87
mini-dk Length 0.94/0.94  0.97/0.97 0.93/0.93 0.06/0.05 0.82/0.82 0.93/0.92 0.61/0.63 0.67/0.65 0.53/0.52 0.84/0.83 0.95/0.96 0.87/0.86
Priming 0.92/0.93  0.97/0.98 0.90/0.90 0.10/0.12  0.74/0.75 0.90/0.90 0.48/0.46 0.61/0.66 0.58/0.60 0.78/0.78 0.94/0.96 0.84/0.85

Phi3 No-constraint  0.95/0.95  0.96/0.96 0.74/0.73  0.03/0.06 0.88/0.89 0.84/0.86 0.80/0.79 0.76/0.74 0.45/0.47 0.90/0.91 0.94/0.94 0.84/0.85

small-8k Length 0.95/0.97 0.96/0.97 0.84/0.86 0.10/0.12 0.87/0.90 0.88/0.90 0.80/0.82 0.77/0.80 0.55/0.56 0.89/0.92 0.94/0.96 0.87/0.90
i Priming 0.97/0.97 0.98/0.97 0.81/0.82 0.29/0.31 0.92/0.92 0.87/0.89 0.86/0.86 0.83/0.82 0.58/0.59 0.92/0.94 0.96/0.97 0.87/0.89

Llama-3
8B

4.3 QUANTIZATION ON LENGTH REPRESENTATIONS

Table 3| shows the R? results for outputs with 8-bit and full-precision settings. We observed that the
results are similar to those obtained with 4-bit quantization, wherein length representations are more
prominently encoded in the attention outputs from the second layer than the other outputs. This
indicates that whether 4- or 8-bit quantization is applied does not significantly affect the LLMs’
capabilities to encode length representations. Therefore, the attention mechanism of the second
layer consistently captures length representations across different precision levels even for different
models with varying sizes.

5 EFFECT OF DISENTANGLING LENGTH REPRESENTATIONS

The previous section investigated which components and layers contain length representations for
output sequence length with varying prompts. While we found that the second layer in the attention
networks has a strong correlation with length representations, this does not indicate which hidden
units are actually responsible for controlling the output sequence length. Thus, which hidden units
must be identified for a better understanding of LLMs’ length control.

5.1 DO LENGTH-SPECIFIC PROMPTS AFFECT INNER LENGTH REPRESENTATIONS?

We also trained separate regressions on each single hidden unit from the second layer of the attention
outputs in Llama-2-13B-Chat, which has a total of 5,120 hidden units. Table shows the results of
the top-10 highest R? scores based on prediction from individual hidden units to each time step.
Unlike all units that were used for prediction in Table[2] we observed distinct differences among the
constraints, including the length-specific prompting method (Priming).

Compared to the No-constraint and Length prompting methods, length-related hidden units within
the attention networks become more active in representing length information when we used more
length-specific prompts such as Priming. Moreover, in the zero-shot setting, the No-constraint and
Length prompts share nearly the same top-10 hidden units for representing length information. Con-
versely, when the Priming prompt was used, different hidden units become active, thus indicating a
shift in how length information is captured by the LLM with more length-specific prompting. Ad-
ditionally, more length-specific prompts of Priming cause each of the top-k hidden units to be more
highly activated than those in the No-constraint and Length prompt settings.

Furthermore, the hidden units for representing length information became nearly identical across
prompting methods when we fine-tuned LLMs, because the model learned the capability to precisely
control output sequence length. Interestingly, the same top-3 hidden units are activated with the
Priming prompt in the zero-shot and fine-tuning settings. This finding indicates that specific length-
related units are consistently activated during Priming, thus guiding LLMs to manage the generation
of output sequence length. These empirical results further demonstrate that LLMs understand in-
context learning as a form of implicit fine-tuning (Dai et al.| [2023]).
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Table 4: R? scores for individual hidden units from the Llama-2-13B-Chat with a 4-bit quantization
setting. The numbers in parentheses indicate an index of hidden units from the second layer of the
attention mechanisms.

Setting Prompting 15t ond 3rd Ath 5th 6t 7th gth gth 10th Avg 30
No-constraint 011 010 0.09 0.07 0.07 0.07 0.06 006  0.06 006 06
(2,100)  (110) (435) (3499  (190)  (1,160) (3,459) (1.611) (4,775) (4,305) i
Zero-shot Lensth 0.14 0.10 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05
& (2,100)  (110) (435) (321)  (1411) (1,611) (4775) (3.499) (1,069) (4,832) .
Primin 0.38 0.32 0.23 0.19 0.18 0.15 0.13 0.13 0.09 0.08 0.08
e (371)  (2.741) (1380) (4,698) (4,554) (1,728) (4,923) (2,100) (2.846) (5,046)
No-constraint 0.42 0.35 0.34 0.28 0.26 0.25 0.25 0.23 0.22 0.21 0.19
* (2,741) (1380) (371)  (4,698) (2.282) (4.372) (1419) (614) (5046) (1,728)
Fine-tuning Lenath 039 038 037 028 025 024 021 021 021 020 ’072707 )
eng| (371)  (2,741) (4372) (4.698) (614) (2,282) (1419) (1,728)  (31) ;
Primin T7040 039 034 031 026 025 024 023 021 021 ’072717 )
2 (371)  (2,741) (1,380) (4,372) (1.419) (614) (1,030) (1,728) (5,046) (2,282) -
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Figure 2: ACR and Rouge-L scores change with standard deviations by multiplying scale in the
Llama-2-13B-Chat. (a) and (b) mean zero-shot and fine-tuning settings, respectively. Base means
original scores without scale modification (i.e., the multiplying scale is 1). The color gray represents
the standard deviations of the Base.

5.2 DOES SCALING LENGTH REPRESENTATIONS AFFECT MODEL-GENERATED TEXT?

To investigate the effect of scaling length representations on model-generated text, we disentangled
the top-k and smallest-k activated hidden units related to length representations in the second layer
from multi-head attention mechanisms. We multiplied these hidden units by negative or positive
numeric values to adjust the output sequence length. This scaling was applied to all output token
positions during the generation process, excluding the input token prompts. We aimed to empiri-
cally demonstrate that such hidden units consider length representations in LLMs and are partially
disentangled from semantic representations. We used Rouge-L (R-L) (Lin} [2004) to evaluate the
informativeness of the summarized sentences when we scaled length representations. R-L measures
the longest common subsequence between the generated and gold summaries. To evaluate the per-
formance with respect to length, we used ACR, which is an arithmetical difference between the
model-generated and gold compression ratios. Thus, ACR value close to zero indicates that the
model-generated summary has a compression ratio similar to that of the gold summary. A higher
ACR means the generated summary is longer than the gold summary, while a lower ACR means it
is shorter.
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Figure 3: Results using different LLMs in zero-shot settings. Models used are (a) Phi-3 Small-8k,
(b) Phi-3 Mini-4k, (c) Llama-2-7B, and (d) Llama-3-8B.

Figure [2] (a) presents the results of applying negative or positive scaling factors to the top-k and
smallest-k activated hidden units in zero-shot settings. When using more length-specific prompts
of Priming, we observed more consistent changes of ACR with modifying only the top-1 hidden
unit. We think this is because Priming contains more highly activated hidden units related to length
representations than No-constraint and Length. Thus, the highly activated length-related units pro-
vide better length representations and length controllability, as shown in Table |4l Additionally, the
output sequence length changes according to increases in the scaling factor. While multiplying pos-
itive and negative values enables the LLM to produce shorter and longer summaries, respectively,
than the original hidden units, particularly in the Priming prompt, in the No-constraint and Length
prompts, the LLM does not generate shorter summaries even when positive scaling values were
applied. As for R-L scores, disentangling the top-k units improves performance, particularly in
the Priming prompt. This finding indicates that adjusting the most highly activated length-related
units not only controls length but also enhances the informativeness of the generated text. However,
when we applied large scaling factors, such as -10 or 10, the R-L scores slightly decrease when the
No-constraint and Length prompts were used. In comparison, for Priming, which is more length-
specific prompts, continues to improve performance even when we applied a large scaling factor
of 10. Finally, disentangling the smallest-k units does not lead to significant changes in output se-
quence length, thus indicating that these units are less involved in encoding length information. For
selected smallest-k units, the individual R? scores are nearly 0.

Figure [2| (b) shows the results of applying negative or positive scaling factors to the top-k and
smallest-k activated hidden units in fine-tuned settings. In contrast to the previous zero-shot set-
tings, we obtained more stable results for all prompts when we disentangled the hidden units. While
multiplying positive scaling values results in generating shorter summaries, multiplying negative
scaling values produces longer summaries. This is because fine-tuning has strengthened the LLM’s
reliance on the top-k length-related units for precise length control. We notice that scaling with large
factors caused a slight decrease in R-L scores, particularly in the No-constraint prompt. While large
scaling factors lead to greater changes in ACR and R-L for the Priming prompt, higher overall R-L
scores are maintained. Furthermore, disentangling the smallest-k has minimal impact on sequence
length among all prompts. Specifically, there are no significant changes in output sequence length
when the smallest-k hidden units were modified. Appendix [C| provides further details of the top-k
and smallest-k.

Figure [3| shows the results using different LLMs in zero-shot settings. When we scale the top-k
hidden units by multiplying them with scaling factors, we observe variations in output length. In
contrast, scaling the smallest-k hidden units does not impact length control during generation.

5.3 BIN-WISE ANALYSIS OF EXTREME SCALING FACTORS ON LENGTH VARIATION

To investigate the effect of applying extreme scaling factors to the top-k hidden units, we analyzed
the results by grouping them into bins with the word count of summaries, which were generated
using a white-space-based split and the base scale. Table [5]shows the results. Multiplying positive
values enables the LLM to generate shorter summaries, while multiplying negative values results
in longer summaries, especially with the Priming prompts in the fine-tuning settings. Furthermore,
using the Base maintains longer summaries, and the greater length variations were observed when
we multiplied scales. This explains why the zero-shot setting shows greater variations in ACR
scores, as shown in Figures [2/and [5| even though each hidden unit has a lower R? score than the
fine-tuning setting. Scaling with extreme factors to the top-k often results in decreased informative-
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Table 5: Results based on word length in Llama-2-13B-Chat with the Priming prompts. In each
cell, x/y represents ACR and R-L. “#Data” refers to the number of data in that interval. ' indicates
the improvement is significant (p<<0.05) compared with the Base when generating shorter or longer
outputs with positive or negative factors, respectively. (Koehn| 2004]).

# of words generated by the Base scale

Setting Prompting Scale 1-10 11-20 21-
#Data 154 559 287
No-constraint ~ Base 1.28 (17.49) / 74.61 (22.58) 23.92(17.30)/68.99 (17.25)  47.48 (13.86) / 51.83 (14.74)
10 8.15(21.27)/72.93 (21.92) 27.56 (19.42)/67.77 (17.14)  47.60 (17.32)/ 51.83 (15.94)
-10 25277 (27.64)/68.13 (20.34)  40.61" (20.98)/62.47 (17.09)  57.321 (22.50) / 48.83 (15.24)
#Data 93 557 350
Zero-shot s o o o o - - - - - - - - - =
Length Base  4.22(16.10)/77.69 (23.42) 26.50 (17.86) /69.53 (16.51)  50.49 (14.72) / 51.77 (14.42)
10 9.83 (20.39) / 75.97 (22.99) 28.56 (19.43) /69.08 (16.81)  51.26 (16.17) / 51.74 (14.97)
-10 19.857 (24.09)/72.95 (21.98)  38.40" (20.83)/64.97 (16.80)  57.421 (16.00) / 49.92 (14.57)
#Data 357 558 85
Priming Base 2.99 (9.78) / T4.79 (24.45) 15.04 (13.34)/72.56 (18.33) ~ 37.14 (14.07) / 60.14 (14.80)
10 1.517(10.27)/75.33 (23.82) 12221 (16.71)/73.15 (19.36)  28.43' (21.24) / 63.49' (19.65)
-10 12721 (22.26)/65.85 (27.94)  26.18" (24.21)/63.96 (22.34)  42.201 (20.71) / 58.15 (16.60)
#Data 649 341 10
No-constraint ~ Base  -4.38 (11.96) / 82.32 (19.75) 4.57 (11.95)/83.64 (17.33) 32.61 (19.87)/65.20 (17.21)
10 -4.757 (12.12)/82.02 (19.63)  2.66 (12.82)/82.66 (18.04)  28.20 (23.41)/ 60.28 (26.72)
-10 -3.147 (13.11)/81.75(19.72)  3.50 (12.62) / 82.52 (17.58) 23.34 (22.14) / 61.13 (24.83)
#Data 492 499 9
Fine-tuning = = - oo m— oo o .
Length Base 1.14 (9.30) / 84.74 (19.03) 7.96 (11.60) / 83.09 (16.46) 24.02 (11.73) / 78.07 (18.05)
10 1.09 (9.11) / 84.86 (18.96) 4571 (11.28)/83.32 (17.79) 14.03" (9.41) / 77.85 (22.60)
-10 3491 (11.71)/82.69 (18.93)  9.46' (12.82)/82.30 (16.51)  23.45 (13.64) / 79.22 (17.62)
#Data 629 370 1
Priming Base -0.36 (4.08) / 86.53 (20.55) 0.18 (5.63) / 83.82 (18.21) 0.00 (0.00) / 83.72 (0.00)
10 -2.92f (5.01) 7 85.13 (20.52) -5.617 (6.73) 1 81.25 (17.64) -8.70" (0.00) / 78.05 (0.00)
-10 9.121 (8.72) / 78.87 (19.06) 17.241 (9.75)/77.70 (13.28) 15.227 (0.00) / 84.00" (0.00)

ness, which indicates that length representations in LLMs are partially disentangled from semantic
representations.

5.4 HUMAN EVALUATION AND CASE STUDY

We further investigated the robustness of scaling top-k approach by evaluating actually generated
outputs with human evaluations.

Human Evaluation Settings. We conducted human evaluations to further assess the effect of disen-
tangling length-related units in zero-shot and fine-tuning settings. Note that we separately evaluated
the zero-shot and fine-tuning settings; thus, their scales might be different. We sampled 100 in-
stances for each setting from the Google test dataset. Using Amazon Mechanical Turk, we assigned
a total of 80 evaluators who held both US high school and bachelor’s degrees for grading the re-
sults, with scores from 1 to 5 (5 is the best), in terms of Coherence (Coh), Conciseness (Conc), and
informativeness (Info).

Results. In the zero-shot and fine-tuning settings, adjusting the length-related hidden units with
positive scaling factors generally enhances conciseness but slightly decreases informativeness be-
cause of the process of generating shorter summaries by keeping coherence. In contrast, negative
scaling improves informativeness but slightly decreases conciseness due to the production of longer
summaries, which can be an inherent trade-off between conciseness and informativeness when con-
trolling output sequence length in summarization (Kikuchi et al., 2016} Makino et al.|[2019).

Case Study. We conducted a detailed case
study to analyze the effects of disentangling
length-related hidden units by comparing the
generated outputs for different scaling factors
with the source and gold summaries. Figure ]

Table 6: The results of human evaluations using
the Priming prompt. The notations are the same
as those in TableE]for scales between 10 and -10.

Zero-shot Fine-tuning presentS examples.
Scale Coh. Conc. Infor. Coh. Conc. Infor.
10 373025 336025 370027 343025 3m02) a2y  Inthe first example, we observed changes in the
1 372(029) 3.59(023) 3.70(0.29) 3.48(0.23) 3.46(0.20) 3.31(0.27) K .
Gold 3.67(0.30) 3.58(0.23) 3.68(0.27) 342(0.26) 3.45(0.22) 3.28(0.22) generated summaries based on different scal-
10 3.69(024) 3.59(0.29) 3.63(0.29) 3.41(0.22) 3477 (022) 3.19(0.23)

ing factors. In particular, when negative scaling
was applied, the generated summaries became
longer than the Base summary by incorporating redundant information, such as “Texans Coach Gary
Kubiak said Thursday,” from the source. In comparison, applying positive scaling values leads to
shorter summaries by focusing on important content similar to the gold summary. When we disen-
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tangled the smallest-k hidden units, the generated summaries remained unchanged, regardless of the
scaling factors, consistently producing the same summary as the Base. In the second example, the

Type Text Length (#word)

Case Keenum will start at quarterback Sunday for the Houston Texans in place of the injured Matt Schaub, Texans Coach Gary Kubiak

said Thursday. 24

Source

Gold Case Keenum will start at quarterback for the Houston Texans. 10
Scale 5 Case Keenum will start at quarterback for the Texans in place of Matt Schaub. 14(-3)
Scale 10 | Case Keenum will start at quarterback for the Texans in place of Schaub, Kubiak said, 15(-2)
Top-10 | scate -5 %?lslizi;num will start at quarterback Sunday for the Texans in place of the injured Matt Schaub, Texans Coach Gary Kubiak said 269
Scate -10 Sj;&#}(\ejz;:; will start at quarterback Sunday for the Houston Texans in place of the injured Matt Schaub, Texans Coach Gary Kubiak 24.(47)
Base (Scale 1) | Case Keenum will start at quarterback Sunday for the Texans in place of the injured Matt Schaub. 17
Scale 5 | Case Keenum will start at quarterback Sunday for the Texans in place of the injured Matt Schaub. 17
Smallest | Scale 10 | Case Keenum wil start at quarterback Sunday for the Texans in place of the injured Matt Schaub. 17
-1e Scale -5 | Case Keenum will start at quarterback Sunday for the Texans in place of the injured Matt Schaub. 17
Scale -10 | Case Keenum will start at quarterback Sunday for the Texans in place of the injured Matt Schaub. 17

Armenian national's midfielder Aras Ozbiliz may miss the friendly match against Russia, technical director Vardan Minasyan told reporters

Source ahead of the match.

Gold Aras Ozbiliz may miss the friendly match against Russia 9
Scale 5 | Armenian midfielder may miss Russia match, 6(1)
Top-1p | SCa1€ 18 | Ammenian micfelder may miss Russa match. 6(1)
Scale -5 | Amenian midfielder Aras Ozbiliz may miss the match against Russia. 10 (+3)
Scale -1 | Aras Ozbiliz may miss the friendly match against Russia, technical director Vardan Minasyan told reporters ahead of the match, 19 (+12)
Base (Scale 1) | Armenian midfielder may miss match against Russia. 7

Scale 5 | Amenian midfielder may miss match against Russia.
Smallest | Scale 10 | Armenian midfielder may miss match against Russia.

-10 Scale -5 | Armenian midfielder may miss match against Russia.

~ NN~

Scale -10 | Armenian midfielder may miss match against Russia.

Figure 4: Summarization examples by scaling with Llama-2-13B-Chat in zero-shot Priming. The
highlighted part represents the changed part from the Base text. The gray and red tokens indicate
deleted and added tokens, respectively, while the blue token represents tokens that have changed
their positions.

results are similar to the first example. However, when the Base summary is already short, positive
scaling with a larger factor, such as 10, did not necessarily produce a shorter summary than a fac-
tor of 5. Furthermore, the LLM considers grammaticality when we applied scaling. For instance,
when scaling with -5, the model generates “the” to maintain grammatical correctness. Appendix D]
provides other cases when multiplying extreme scales.

6 DISCUSSION AND CONCLUSION

In this study, we investigated the process by which output sequence length information is encoded
within the internal representations of LLMs. We focused on identifying the specific components
within transformer layers that contribute to length control during text generation tasks, particularly,
sentence summarization. Our findings empirically demonstrated that the outputs from the second
layer’s attention mechanisms showed a strong correlation with the generation time step, thus indi-
cating that length representations were captured early in the process. We also found that this pattern
was consistent with different models with different sizes, such as the LLlama and Phi families, and
continued to be robust even when 4- and 8-bit quantizations were applied.

Furthermore, we analyzed individual hidden units from the second layer attention outputs and found
that certain hidden units are highly activated and directly contributed to the process of representing
length information. Moreover, these units became more active when length-specific prompts such
as Priming were used. This finding indicates that LLMs adjust their internal representations based
on the input prompts. Furthermore, by scaling these length-related hidden units, we effectively
controlled the output sequence length without losing informativeness. While positive scaling factors
led to shorter summaries, negative scaling resulted in longer summaries. It indicates that length
information is partially disentangled from semantic representations within LLMs.

Finally, our results revealed that fine-tuning further improved the LLMs’ capabilities by reinforcing
reliance on the top-k length-related units. We also found the same activation of specific hidden units
in the Priming prompt are shared between zero-shot and fine-tuning settings, that indicates LLMs
have constructed robust internal mechanisms for controlling output sequence length, and in-context
learning performs similarly to implicit fine-tuning (Dai et al.| 2023)). Our findings have impor-
tant implications for the interpretability and controllability of LLMs in natural language generation
tasks. Understanding how length information is internally encoded allows for more precise length
control over generated outputs, which is crucial in applications, such as summarization and machine
translation, where adhering to length constraints is often required.

10
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A EXPERIMENTAL DETAILS

Computing interfaces. We used the following
Table 7: Hyperparameters GPUs:

Parameter Value e NVIDIA A100 GPU for Llama-2-

70B-Chat
Epochs 1,000
Batch size 32’ 64 e NVIDIA A6000 GPU for other LLMs

Learning rate  le-3
Dropout rate 0.1

Hyperparameters. Table [/| shows the hyper-

Patience 5.10 parameters used in our experiments. All feed-
Loss NiSE forward networks were trained for 1,000 epochs
Activation ReL.U with a learning rate of le-3 and a dropout rate

of 0.1. For the linear regression to predict the
generation time step from all hidden unit (Ta-
ble[2] Table[3] and Figure[I), the batch size was
set to 32 with an early stopping patience of 10 epochs. For the linear regression to predict the gener-
ation time step from each individual hidden unit (Table d] Table[5] and Figure[2), the batch size was
set to 64 with an early stopping patience of 5 epochs.

B DATASET DETAILS

In our experiments, we randomly divided the

Table 8: Dataset statistics datasets into 90% for training and 10% for val-

idation. In the linear regression using all hid-

Model No-constraint Length Priming  d€n unit, we used the entire dataset generated

Llama-2-7B 21385 24121 25394 from each sequence of summaries. In contrast,

Llama-2-13B 26,526 28,590 20,291  when performing linear regression using indi-

™ ao%se 1937 1ssy;  Vidual hidden units, we restricted the number of

Llama-3-8B 17.952 22853 13.366 dataset across different prompts to ensure that

Phi3-mini-4k 30,552 18,500 25160  each model learned length information from the
Phi3-small-8k 25,578 30,938 18,841

same amount of dataset.

C ADDITIONAL EXPERIMENTS
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Figure 5: ACR and Rouge-L score change by multiplying scale in Llama-2-13B-Chat, for (a) means
zero-shot and (b) means fine-tuning setting. The notations are same as those in Figure

Table 9: Average R? scores of individual hidden Figure [5] shows additional experimental results
unit for Top-500 with Llama-2-13B-Chat for disentangling the top- and smallest-50, -
100, -500 hidden units. We obtained the sim-
Setting No-constraint Length Priming ilar results to that of 'Figure When a large
number of hidden units are modified, the top-
F%rféotusrllllorf 88?? 883; gggé k still produce more significant length changes
- g : : : than the smallest-k. However, we also ob-
served length changes when disentangling the
smallest-k units in zero-shot settings. This is because not only informativeness but also length infor-
mation could be affected when many hidden units are modified, resulting in the significant decrease
in R-L scores.

As shown in Table @ when we averaged the top-500 hidden units of their individual R?, we ob-
served nearly zero R“ scores for each setting; thus, disentangling top-500 hidden units resulted in
significant decreases in R-L scores. While disentangling the top-500 hidden units led to large vari-
ations in output length, modifying the smallest-500 hidden units did not affect length variations in
the fine-tuning settings.

D OTHER CASE STUDY

Figure[6]shows case studies. We found that the generated summaries ended abnormally early or that
tokens were generated without spaces when extreme numeric values, such as -10, were used. This
resulted in cases where the R-L scores significantly decreased with extreme scaling factors.
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Type Text Length (#word)
Source South African captain Graeme Smith ha‘\\_ed “an '\vncredi‘b\e win" for his team after they clinched an emphatic ten-wicket victory on the 35
fifth day of the second and final Test against India at Kingsmead on Monday.

Gold Graeme Smith hailed an incredible win. 6

Top-10 | Scale -10 |S. 1(-8)
Base (Scale 1) South African captain Graeme Smith hailed an incredible win. 9
Source Unknown assailants blew up a natural gas pipeline in Egypt, a security source said. 14
Gold Assailants blew up a gas pipeline in Egypt. 8

Top-10 ‘ Scale -10 | AssBlewUpNatGasPipEgy. 1(-8)
Base (Scale 1) Assailants blew up a natural gas pipeline in Egypt. 9

Figure 6: Case studies by scaling factors using Llama-2-13B-Chat with zero-shot priming.
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